Alteration in Bacillus thuringiensis toxicity by curing gut flora: novel approach for mosquito resistance management


Mosquitoes are known for acquiring resistance against insecticides in many ways, namely target side mutation, enzyme modification, sequestration, quick elimination, etc. But, the role of microflora present in abundance in the larval midgut is less explored with respect to their role in insecticide resistance. During the course of their development, mosquitoes are continuously exposed to microbes and have naturally acquired midgut microbial flora. This midgut flora can modulate the mosquito’s susceptibility to Bacillus thuringiensis (Bt) infection by degrading toxic Bt protein forms through an unknown mechanism. In this study, we show that microbe-free aseptic mosquito larvae displayed an increased susceptibility to Bt toxicity compared to larvae harboring natural microbial flora. Fourth instar larvae of Anopheles stephensi were treated separately with penicillin, streptomycin, erythromycin (100 μg/ml), and mixtures of all three antibiotics and then analyzed for Bt toxicity. We have also examined the influence of the mosquito’s midgut microbial flora under microaerophilic condition on the Bt protein degradation through plate, broth, TLC, and UV–vis spectrophotometric assay. A better understanding of the roles of microbiota in preventing Bt toxicity to mosquitoes could potentially lead to the development of new sustainable mosquito control strategies.


This entry was posted in Uncategorized. Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s