http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0017019

Microdroplet-enabled highly parallel co-cultivation of microbial communities

by Park et al. 2011 PLoS One

 

Abstract

Microbial interactions in natural microbiota are, in many cases, crucial for the sustenance of the communities, but the precise nature of these interactions remain largely unknown because of the inherent complexity and difficulties in laboratory cultivation. Conventional pure culture-oriented cultivation does not account for these interactions mediated by small molecules, which severely limits its utility in cultivating and studying “unculturable” microorganisms from synergistic communities. In this study, we developed a simple microfluidic device for highly parallel co-cultivation of symbiotic microbial communities and demonstrated its effectiveness in discovering synergistic interactions among microbes. Using aqueous micro-droplets dispersed in a continuous oil phase, the device could readily encapsulate and co-cultivate subsets of a community. A large number of droplets, up to ~1,400 in a 10 mm×5 mm chamber, were generated with a frequency of 500 droplets/sec. A synthetic model system consisting of cross-feeding E. coli mutants was used to mimic compositions of symbionts and other microbes in natural microbial communities. Our device was able to detect a pair-wise symbiotic relationship when one partner accounted for as low as 1% of the total population or each symbiont was about 3% of the artificial community.

Advertisements
Link | This entry was posted in Microbial Communities, Microbial Ecology, Uncategorized and tagged . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s